Biological Activity, Reactivity, and Use of Chromotropic Acid and its Derivatives

Jan Duda

Institute of General Food Chemistry, Technical University of Łódź, Łódź, Poland

1 Introduction

Chromotropic acid is the customary name of 4,5-dihydroxy-2,7naphthalenedisulfonic acid (1a). This compound was synthesized last century and was originally used as a chrome dye. In the dyestuff industry, however, its azo derivatives (1d) and (1e) are now of greater importance. A profusion of these monoazo and bisazo dyes exists, covering a full colour palette. In recent years it has been found that derivatives of naphthalenesulfonic acids show some activity against viruses, including HIV.

$$\begin{pmatrix} 0H & 0H \\ R^{1} & 5 & 10 \\ 6 & 7 & 8 \\ HO_{3}S & 8 & 1 \\ \end{pmatrix} \begin{pmatrix} 1a; R^{1} = R^{2} = H \\ 1b; R^{1} = R^{2} = CI \\ 1c; R^{1} = R^{2} = Br \\ 1d; R^{1} = H, R^{2} = -N = N - Ar \\ 1e; R^{1} = R^{2} = -N = N - Ar \\ \end{pmatrix}$$

Chromotropic acid (H_2 Chr) contains moieties which significantly affect its properties and determine its numerous applications. The peri-system of two hydroxyl groups determines the complex-forming properties of this compound and, on the other hand, together with the naphthalene ring makes it possible to create oxidized forms or naphthalene–quinone systems. Ring oxidizability can be affected by substituents in positions 3 and 6, *e.g.* halogen substituents (1b, 1c). Sulfonic groups (or their sodium salts) confer good water solubility on chromotropic acid and its derivatives.

This review will discuss the properties and numerous applications of chromotropic acid and its derivatives.

2 Complexing Properties

By the beginning of this century it was known that chromotropic acid formed complexes with metal ions – the first discovered being the Fe¹¹¹ complexes. In 1952, the complexation of chromotropic acid and Ti^{1V} was discovered and put to use in the

Jan Duda was born in 1947 in Łódź, Poland. He graduated from

the Technical University of Lódź with the M.Sc. and Ph.D. degrees in chemistry. His Ph.D. thesis concerned complexes of Ti^{IV} , Zr^{IV} , and Hf^{IV} with derivatives of chromotropic acid. He now lectures on analytical, inorganic, and instrumental chemistry at the Faculty of Food Chemistry and Biotechnology, Technical University of Lódź, and his research interests are in the fields of comprehensive coordination and analytical chemistry. determination of Ti^{IV} ions. Over the following years many studies were published on the identification, composition, structure, and use of metal complexes with H₂Chr in chemical analysis. H₂Chr forms complexes with the following metal ions: Ca^{II} , Sr^{II} , Ba^{II} , Be^{II} , Al^{III} , Ga^{II} , In^{II} , Cr^{III} , Mn^{II} , Cu^{II} , Sn^{II} , U^{VI} , Mo^{IV} , Th^{IV} , Zr^{IV} , Ti^{III} , and lanthanide ions. An increase in chromotropic acid selectivity for Ti^{1V} ions can be obtained in the pH range 1 to 2. The determination of Ti^{1V}, with H₂Chr is an example of the most frequent use for H₂Chr, viz., as a complexing agent. In attempts to improve the complexing reagent stability in solutions, halogen derivatives of chromotropic acid such as H₂ChrCl₂ (1b) and H₂ChrBr₂ (1c) have been synthesized.^{1,2} The diiodic derivative H₂ChrI₂ has not as yet been obtained as a solid compound, but evidence for its formation in solutions has been found from examining the UV spectra of iodinated H₂Chr solutions. An investigation of the effect of substituents (Cl, Br) in the H₂Chr molecule on the stability of complexes (2) of H₂Chr, H₂ChrCl₂, and H₂ChrBr₂ with Ti^{IV} ions, has found that the stability of these complexes decreases in the order H₂Chr, H₂ChrCl₂, H₂ChrBr₂. The sensitivity of the determination of Ti^{1V} ions increases in the same direction, while the pH of the complexation process shifts towards more acidic solutions, *i.e.* more convenient reaction conditions from the point of view of limiting the hydrolysis of complexing metal ions as well as eliminating the influence of interfering ions.

The complexation reaction of H_2Chr^6 or $H_2ChrBr_2^7$ with boric acid, H_3BO_3 has an interesting mechanism. The complex formation brings about changes in the coordination number of boron and its structure (Scheme 1). The kinetics of this reaction

were investigated using a high-presssure stopped flow apparatus with spectrophotometric detection, which was utilized for the first time to that aim. In the first stage (I) bond formation with one hydroxyl group of the ligand results in a tetrahedral intermediate complex. The coordination of boron atom is thus changed at this stage from $3(sp^2)$ to $4(sp^3)$. In the next stage (II), another bond is formed with the oxygen atom of the second hydroxyl group resulting in a chelate ring, with dissociation of a water molecule. Thermodynamic and kinetic parameters for stage (I), which determines the reaction rate, have been found.⁶

Beryllium is extremely toxic and an important achievement has been in the development of a method using H₂Chr for the determination of beryllium ions Chromotropic acid can neutralize the toxicity of beryllium(II), binding it into very stable complexes, and the stability constants of these complexes were determined utilizing an (atypical) ⁹Be-NMR spectroscopic method ⁸ Owing to the slow exchange between the free ligand and the ligands combined into 1 1 and 1 2 complexes, it was possible to observe separate signals of $[Be(H_2O)_4]^{2+}$ and beryllium(II) in complexes with H₂Chr The signal intensities showed directly the concentrations of appropriate species, which enabled the stability constants to be calculated

As a result of all the complexes of chromotropic acid and its halogen derivatives being very soluble in water and aqueous solutions, there are only few papers devoted to the preparation of these complexes in the solid state. In the literature one can find only the characteristic IR spectra of solid H_2 ChrCl₂ complexes with Ti^{IV} ion⁹ and H_2 Chr complexes with ions for the following Cr^{III}, Fe^{III}, Co^{II}, Ni^{II}, Cu^{II}, Zn^{II}, V^{IV}, and Mn^{II}, ¹⁰ Measurements of the conductivity of solid chromotropic acid¹¹ with added of Zr^{IV}, or Ce^{III}, ions have been made in an attempt to examine the mechanism of charge-transfer by these complexes as a preliminary to their use in electrode reactions

3 Reactions with Formaldehyde

The colour reaction of chromotropic acid with formaldehyde has been used in chemical analysis since 1937 This is a characteristic reaction not only of formaldehyde but also of other compounds containing an aldehyde group Many other compounds can therefore be determined by this reaction following their conversion into an appropriate form, eg methanol and glycol after oxidation, formic acid after reduction The structure of the coloured compound ($\lambda = 580$ nm), formed in concentrated H₂SO₄ (96%), was confirmed in 1989 by Georghiou¹² using a ¹³C-NMR method The structure of the compound is illustrated in (3)

A completely different compound has been obtained¹³ from the reaction between H₂Chr and formaldehyde taken in the proportion 1 5 The resultant cyclic tetramer named cyclotetrachromotropylene is a representative of water-soluble macrocyclic compounds which can serve as model compounds for biological systems In an alkaline medium, the possible formation of intramolecular hydrogen bonding between adjacent O⁻ anions and -OH groups leads to a boat structure rather than to a chair structure These conformers are presented schematically in formulae (4a) and (4b) Such a boat conformation can better play the part of host to guest cations This has been shown¹³ with amines and protonated amines Depending on the size of the amine, this molecule can penetrate partly or completely into the cavity of the host from the face bearing the sulfonic acid groups Undoubtedly, this compound will also show selectivity in complexation processes with metal ions This cyclic tetramer has been found to be active against viral infection and its use has been patented ¹⁴ Its suitability as anticoagulant has also been confirmed 15

4 Oxidation Reactions of H₂Chr and its Derivatives

An aqueous solution of the disodium salt of H_2Chr , colourless when prepared, rapidly becomes yellow and then spontaneously becomes brown owing to gradual oxidation of the reagent Halogen derivatives such as H_2ChrCl_2 and H_2ChrBr_2 show higher stability to oxidation than does H_2Chr , H_2ChrCl_2 is about 400 times more stable than H_2Chr^{-1} To overcome this in all the applications of these compounds therefore, fresh solutions should be prepared just before use and stored, if necessary, in the dark Some metal ions show a catalytic effect on the oxidation of H_2Chr This, however, has also found positive applications

The Bielousov-Zhabotinskii reaction (BZR) has been found to occur with the participation of chromotropic acid ¹⁶ The 'classic' BZR is an oscillation process of oxidation of various organic compounds with a bromate solution (KBrO₃) in a strongly acidic medium in the presence of various metal-ion catalysts It was soon found that the reaction could proceed without catalysts, oscillations were also observed in a system of catalyst and bromate, without the participation of an organic compound So, the reasons for the oscillation lie in the reduction of bromate and appearance of reactive intermediate products Uncatalysed bromate oscillators (UBO) have been found in a system containing H₂Chr and potassium bromate ¹⁶ One could observe simultaneously potential oscillations on the platinum electrode and oscillations of the Br ion concentration on the bromo-selective electrode A five-stage scheme has been proposed for this type of oscillator, including, among other things, a bromide ion with autocatalytic effects Supposed products of oxidation of chromotropic acid have been identified by means of UV/VIS spectra as o-quinone derivatives of H₂Chr

More often the reactions between H₂Chr and KBrO₃, including the catalytic effect of metal ions, mainly vanadium(v), have been studied In these cases the concentrations of H₂Chr and bromate were lower by two or three orders of magnitude and the system was buffered to a pH of about 38, hence oscillation effects were neither observed nor considered This reaction has found its analytical application in the determination of vanadium ions in solution, and has been subjected to detailed investigations concerning the conditions of the reaction and the oxidized forms of H₂Chr created in this system ^{17 20} These studies have been extended by including halogen derivatives $H_2ChrCl_2^{18}$ ²⁰ and $H_2ChrBr_2^{1920}$ It has been shown that the mechanism of oxidation of chromotropic acid is different from that of its halogen derivatives The oxidation of H₂Chr results in the desulfonation of its molecule and formation of polymeric para-naphthoquinone derivatives, which have not been separated as yet In the case of H_2 ChrBr₂, a mixture of three oxidation products has been separated by chromatography Two of the oxidation products have been obtained in the solid state and identified by ¹H-NMR ²⁰ The main product is the para-naphthalenequinone derivative (5) which amounts to about 45%, and this is further oxidized to compound (6) At the same time orthonaphthalenequinone derivative is formed (7) It has been shown¹⁹ that the oxidation process of H₂ChrBr₂ with KBrO₃ in the presence of vanadium(v) as catalyst makes it possible to determine vanadium down to a level of 1 ng/ml This is a fivefold improvement in sensitivity compared to the use of H₂Chr (detection limit, 5 ng/ml)

Redox reactions in the H_2 Chr system have been utilized in the investigation of 8-hydroxy-1,2-naphthoquinone-3,6-disulfonic

acid (8) Its reduced form 8-hydroxy-1,2-naphthohydroquinone-3,6-disulfonic acid (9) is a hydroxy derivative of chromotropic acid The oxidized form of this compound (8) has been found to show specific adsorption on the mercury dropping electrode ²¹ In further studies on the redox pair [compounds (8) and (9)] in the electrochemical reduction of oxygen to hydrogen peroxide,²² compound (8) has been proposed as a mediator in the preparation of aqueous solutions of H_2O_2 ²³ This redox pair can be also used in photoelectrochemical cells ²² This opens a new future field for the utilization of chromotropic acid and its derivatives

5 Biological Activity

Over 20 years ago²⁴ it was discovered that chromotropic acid showed some anti-viral effects (against the influenza virus among others), being effective both *in vitro* and *in vivo* Subsequently, the effects of simple and ternary complexes of Cu¹¹, Ni¹¹, and Zn¹¹ with chromotropic acid on some bacteria and fungi have been investigated ²⁵ It has been found that ternary complexes show higher activities than simple complexes and ligands separately

Particular attention has been paid to chromotropic acid and its derivatives as a result of the activity recently found (1992) in derivatives of sulfonic acids²⁶ against the human immunodeficiency virus (HIV)

Among the viruses which cause AIDS, HIV-1 and HIV-2 have been distinguished These types differ, amongst other things, in the structure of their reverse transcriptase (RT), an enzyme which is important for viral replication Inhibition of RT is one of three postulated effects of chromotropic acid on HIV A second is the binding of virus envelope protein to its receptor on human T-lymphocytes A third is an action on the proteinase which participates in the virus replication process Some derivatives of chromotropic acid have been shown to react according the first and the third mechanisms

Of the 27 sulfonic acid derivatives studied²⁷ as potential RT inhibitors of HIV-1 and HIV-2, the highest activity has been shown by dipalmitoyl derivatives of chromotropic acid (10) Whilst chromotropic acid itself shows a higher inhibitary effect than most of the compounds examined, the activity of derivative (10) is almost 100 times higher. The concentrations of compound (10) (in μ M) bringing about 50% inhibition of HIV-1 and HIV-2 were $IC_{50} = 24$ and $IC_{50} = 0.86$, respectively These are lower concentrations than those of bis naphthalenetrisulfonic acid, suramine, previously used as an antitripanosomal agent, the inhibitary effects of which²⁶ have brought about an intensive search for anti-RT activity within this class of compounds Based on past investigations, one can postulate that the negatively charged sulfonic groups $-SO_3^-$ interact with positively charged sites on the enzyme An additional role may be played by the metal ion chelating properties of the derivatives. It has been found that the optimum HIV-1 RT activity requires the presence of Mg²⁺ ions The binding of metal ions by chromotropic acid into stable chelate complexes should increase the activity of the compounds towards RT inhibition However, the essential role of the lipophilic palmitoyl functionality in the high anti-RT activity of compound (10) has yet to be elucidated

The third mechanism (on proteinase) mentioned above is associated with the hypothesis that the 'ends' of the negatively charged inhibitor might form ionic bonds with arginine located at either ends of the substrate-binding groove of the enzyme Of the 32 derivatives²⁸ containing negatively charged groups separated by distances matching appropriate sites on HIV-1 proteinase, the bisazoderivative of chromotropic acid, bromosulfonazo III (11), has shown one of the highest inhibitions of synthetic HIV-1 proteinase activity ($IC_{50} = 4$)

Antitumour and protein kinase C inhibiting activity has been found in a substance isolated from the mycelium of the Chinese bamboo fungus (Shiraia bambusicola) A compound with an analogous carbon skeleton has been synthesized²⁹ from chromotropic acid by heating it with anhydrous aluminium chloride and sodium chloride The resulting compound (12) can exist as the acid (12a) or tetrasodium salt (12b) Of 27 similar compounds, tetrasodium 1,6,7,12-tetrasulfo-4,9-dihydroxy-3,6-perylenequinone (12b) has shown the highest activity against HSV-1 and HSV-2 viruses

6 Conclusions

The reactions of chromotropic acid and its derivatives described above do not exhaust all the possible applications of these compounds For example, the use of H₂Chr in analytical chemistry is considerably wider than detailed and besides the above mentioned cations includes the determination of ions of such elements as Se^{IV} , and Te^{IV} , anions such as NO_2^- , NO_3^- , and ClO_3^- , as well as H_2O_2 , and glucose in blood

The oxidizability of H₂Chr has been utilized in industry for the manufacture of photographic coatings, xerographic paper, for galvanic polishing of steel surfaces, and anodic coating of aluminium alloy surfaces One should expect new applications of chromotropic acid and its derivatives in reactions associated with electron exchange (photocells) Certainly, intensive studies will be continued on the biological activity of chromotropic acid derivatives, to utilize them in the struggle against AIDS

7 References

- 1 V I Kuznetsov and N N Basargin, Zh Anal Khim, 1961, 16, 573 2 J Maslowska and J Duda, Zesz Nauk Politech Lodz Chem, 1974,
- 29.53
- 3 J Maslowska and J Duda, Chem Anal (Warsaw), 1978, 23, 805
- 4 J Duda, Ph D Thesis, Technical University of Lodz, 1977
- 5 J Maslowska and J Duda, Acta Univ Lodz Zesz Nauk Univ Lodz Nauk Mat-Przyrod Ser II, 1978, 24, 59
- 6 K Ishikara Y Mouri, S Funahashi, and T Motoharu, Inorg Chem 1991 30 2356
- 7 M Bartusek, L Brchan, and L Havelkova, Spisy prirodoved fak Univ J E Purkvne, 1969, 499, 19
- 8 D F Evans and C Y Wong, J Chem Soc Dalton Trans, 1992, 2009
- 9 J Duda and J Masowska, Rocz Chem , 1973, 47, 899
- 10 N T Abdal-Ghani, Y M Issa, M A Khaled, and M H El-Kottamy Thermochum Acta, 1988, 125, 165
- 11 E W Abd and G Mohamed, Acta Chim Hung, 1990, 127, 51
- 12 P E Georghiou and C K Ho, Can J Chem, 1989, 67, 871
- 13 B L Poh and C S Lim, Tetrahedron, 1990, 46, 3651
- 14 K M Hwang, Y M Qi, and S Y Liu, Pat PCT Int Appl WO, 92, 12709, 1992
- 15 K M Hwang, Y M Qi, S Y Liu, T C Lee, W Choy, and J Chen, Pat CPT Int Appl WO, 92, 12708, 1992
- L Kunert and H J Krug, J Phys Chem, 1990, 94, 678 16
- T Yamane, T Suzuki, and T Mukoyama, Anal Chim Acta, 1974, 17 70, 77
- 18 A T Pilipenko, E R Falendysh, V G Safronova, and N F Falendysh, Zh Anal Khum, 1983, **38**, 1197 19 J Duda, Pol J Chem, 1991, **65**, 67
- 20 J Duda, Chem Anal (Warsaw), 1993, 38, 405
- 21 J Duda, J Electroanal Chem, 1991, 313, 355
- 22 J Duda, Pol J Chem, 1991, 65, 1701
- 23 J Duda and J Maslowska, *Pat PL* 161107, 1993 24 S Akerfeldt, G Westin, and T Janson, *Med Chem*, 1971, **14**, 596
- 25 R C Sharma, R S Sharma, and S P Tripathi, Curr Sci., 1983, 52, 410
- 26 E De Clercq, Antiviral Res, 1987, 7, 1
- 27 G T Tan, A Wickramasinghe, S Verma, R Singh, S H Hughes, J
- M Pezzuto, M Baba, and P Mohan, J Med Chem, 1992, 35, 4846 28 R I Brinkworth and D P Fairlie, Biochem Biophys Res Commun, 1992. 188. 624
- 29 H K Wang, J X Xie, J J Chang, K M Hwang, S Y Liu, M B Lawrence, J B Jiang, and K H Lee, J Med Chem, 1992, 35, 2717